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Chapter 2 
Analytical Modeling of Concrete 
Hydraulic Structures 
 

2-1. General 

Structural modeling procedures consistent with the time-history method of analysis are discussed in this 
chapter. First the massive concrete hydraulic structures are defined and their general dynamic characteristics 
described. Then modeling procedures applicable to each hydraulic structure and fluid-structure and 
foundation-structure interactions are discussed, followed by description and application of the earthquake 
input motions required in the analysis. In general, the structural models developed should consider the most 
important dynamic characteristics of each particular hydraulic structure, including the fluid-structure and 
foundation-structure interactions. The effects of dynamic backfill pressures on the navigation lock walls and 
the reservoir boundary absorption for concrete dams can also be significant and should be considered 
(1-7f(4)).  The structural modeling of a particular hydraulic structure is generally accomplished using a beam 
and/or finite element idealization of the structure. However, modeling for the fluid-structure interaction, 
foundation rock-structure interaction, and SPSI is more involved and may include simple procedures as well 
as more elaborate formulations.  Earthquake input motions are described, and the manner in which they are 
applied to the structure is also discussed.  
 

2-2. Types of Concrete Hydraulic Structures   

Hydraulic structures considered in this manual include massive concrete structures designed for impounding 
water, regulating the release of impounded water, or fulfilling navigation demands during the periods when 
the riverflows are inadequate. These massive concrete structures include gravity and arch dams, intake towers, 
U-frame and W-frame navigation locks, and their associated approach walls. 

2-3. Concrete Gravity Dams  

 a. Gravity dams are massive concrete hydraulic structures that retain the impounded water by resisting 
the forces imposed on them mainly by their own weight (Figure 2-1a). They are designed so that every unit of 
length is stable independent of the adjacent units. Although a typical gravity dam is usually straight, the dams 
are sometimes curved in plan to accommodate site topography and to gain added stability through arch action. 
The construction materials for gravity dams have evolved from stone masonry of the historic dams to mass 
concrete. To reduce the construction costs in comparison with those of the earth-fill and rock-fill dams, more 
gravity dams are now being built using the roller-compacted concrete (RCC), which uses earth-fill 
construction techniques. 
 
 b. Traditionally, analysis of a gravity dam considered a very simple mathematical model of the structure. 
Such a method was based on the concept that the resistance to external forces was 2-D in nature, so only a 
unit slice of the dam taken in the upstream-downstream direction was analyzed. The earthquake forces were 
expressed as the product of a seismic coefficient and were treated simply as static forces. Only the effects of 
horizontal ground motion applied in the upstream-downstream direction were considered. However, to 
represent  the resistance mechanism  realistically, it now has become standard practice to use some form of 
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d. Supported Intake Towerc. Free-standing Intake Tower

e. U-Frame Lock f. W-Frame Locks

g. Massive Lock Wall h. Massive Guide Wall
 

 
    Figure 2-1. Types of concrete hydraulic structures  
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finite element model in the analysis of both the static and dynamic response of concrete gravity dams. The 
finite element method not only represents the resistance mechanism more realistically, but it also takes into 
account the dynamic characteristics of the dam-water-foundation system as well as the characteristics of 
earthquake ground motion.  The inherent strength and stiffness of gravity dams in the cross-stream direction 
are so great that there usually is no concern about their response to earthquake excitation acting in that 
direction. However, it has been demonstrated (Chopra 1987) that the dynamic response of a gravity dam to 
the vertical component of the earthquake motions may be similar in amplitude to that induced by the 
horizontal ground motions and should be considered in the analysis. 

2-4. Concrete Arch Dams 

 a. An arch dam (Figure 2-1b) is a solid concrete hydraulic structure curved in plan and possibly in 
elevation, which transmits a large portion of the water pressure and other loads by means of thrust (arch 
action) to the abutment, therefore utilizing the compressive strength of its material. Deriving their structural 
behavior from material strength rather than the sheer weight of the dam, arch dams are recognized for their 
structural competence and economical construction.  
 
 b. Arch dams are generally classified as thin, medium-thick, and thick arch dams.  Their shapes have 
gradually changed from the early circular, horizontal, constant-thickness arches and vertical upstream faces to 
the more elaborate thin double-curvature arch dams with variable radii, variable thickness, and noticeable 
overhangs.   
 
 c. The response of an arch dam to ground shaking is similar to that of a gravity dam in the sense that 
both types are subject to dynamic response amplification in accordance with the relationships between the 
frequencies of the dam system and those of the earthquake motions. However, because of the complicated 3-D 
configuration of an arch dam, its response must be considered with regard to all three components of seismic 
input. Hence a rather refined 3-D model must be formulated of the dam and its foundation to calculate the 
vibration properties that control the dynamic amplification of the input accelerations. The inertial and 
damping effects of the reservoir water have an important effect on the vibration properties and response of an 
arch dam as they do for a gravity dam, and thus they must be included in the mathematical model as described 
in paragraph 2-13c.   

2-5. Intake-outlet Towers  

 a. Intake-outlet towers form the entrance to reservoir outlet works. They are often equipped with gates 
for regulating the release of water, or for lowering the reservoir as a precautionary measure after a major 
earthquake event. The failure of an intake-outlet tower during an earthquake could possibly the disrupt 
delivery of  important public services and sometimes contributed to failure of a dam. It is therefore important 
that intake-outlet towers in seismically active regions be designed or evaluated to withstand earthquakes using 
rational analytical methods, which are based on a sound understanding of the dynamic behavior of the tower-
water-foundation system. 
 
 b. Most intake-outlet towers are free-standing structures surrounded by water and founded on an 
enlarged base on the reservoir bottom or partially encased through bedrock or hard soil (Figure 2-1c). Some 
are embedded within embankment dams; others are structurally connected to the upstream of concrete dams. 
There are yet other intake towers that are inclined against the rock slopes and partially embedded into the 
bedrock formation (Figure 2-1d). The intake structures at Seven Oaks Dam in southern California and at 
Cerrillos Dam in Puerto Rico are two examples of inclined towers designed by USACE. The design of Seven 
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Oaks Dam intake tower also included anchoring it to the inclined slope rock to provide resistance for severe 
earthquake force demands of the southern California earthquakes.  
 
 c. Regardless of their types, intake towers are surrounded by water, sometimes to a significant height, 
and may contain internal water. Intake towers are therefore subjected to the fluid-structure interaction effects 
that can significantly influence their responses to earthquakes. The response of intake towers is also 
influenced by soil-structure interaction (embankment, rock, or soil foundation), and possibly by the access 
bridge, mass of the internal equipment, and response of the dam when the towers are tied to concrete dams. 
Depending on the complexity of the geometry of the tower, stick models with beam element and lumped 
masses or 3-D finite element mathematical models are required to adequately represent their vibration 
characteristics and their dynamic responses. 

2-6. U-frame and W-frame Navigation Locks   

Navigation locks are massive concrete hydraulic structures designed to provide navigable pass for towboats 
during the periods when the riverflows are inadequate. A U-frame (single chamber, Figure 2-1e) or W-frame 
(dual chamber, Figure 2-1f) lock consists of reinforced concrete walls constructed integrally with a reinforced 
floor slab founded on a pile foundation. On major navigable rivers, locks are usually built in conjunction with 
navigation dams, and may cover several hundreds to over one thousand feet in total length.  A typical lock 
normally includes numerous monoliths of variable length and type separated by construction joints. The 
chamber monoliths make up the main portion of the lock, while the culvert intake, upper gate, culvert valve, 
culvert discharge, and lower gate monoliths serve as the special-purpose monoliths covering the remaining 
length of the structure. Lock structures contain water and are bounded by water on the river wall, which may 
reach a significant height. Thus they are subjected to fluid-structure interaction effects that can influence their 
response to earthquakes. The response of lock structures can also be affected significantly by the interactions 
with the soil-pile foundation and the backfill soil. Considering that the SPSI also affects the seismic input 
motion, SPSI analyses are required to adequately represent both the seismic input and the dynamic response 
of the pile-founded locks. 

2-7. Massive Concrete Lock Walls 

At locations where sound and durable rock is available, lock chambers and their extensions upstream and 
downstream may be constructed with separate massive walls founded on the foundation rock (Figure 2-1g). 
These gravity-type lock walls usually have a thin or nonexistent floor section. The land wall and river wall 
may therefore be treated as separate gravity sections subjected to all applicable loads discussed in 
paragraph 2-16. 

2-8. Massive Concrete Guide Walls  

 a. Massive concrete guide walls control navigation conditions in the upper and lower approach areas of 
a lock structure. The purpose of the walls is to guide towboat traffic and other vessels into and out of the 
locks. Guide walls are designed as either a drilled shaft or cellular fixed wall or a floating pontoon wall. Fixed 
guide walls (Figure 2-1h) normally consist of cast-in-place concrete walls supported on circular sheet pile 
cells. The loads applied to the foundation from the fixed walls are usually high due to the large quantity of 
concrete resting on the cells. High seismic loads, large towboat impact loads, and the dead load from the fixed 
guide walls may require that the cells be founded on steel piles driven through the cells and into the 
competent rock formation.  
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 b. The floating guide walls usually consist of a floating pontoon spanning pylons, one at each end. The 
wall may also include a nose pier at one end for protection against direct impacts. A single drilled shaft 
several feet in diameter may support the pylons while three or more drilled shafts may be required to support 
the nose piers. The drilled shafts normally consist of a steel pipe filled with reinforced concrete. Similar to the 
fixed walls, floating approach walls are also designed to resist a variety of loads including barge impact, 
wind, current forces, and seismic base motions. Both the fixed and floating walls are subjected to the fluid-
structure interaction effects that can significantly influence their responses to earthquake and impact loading. 
The response of approach walls is also influenced by the SPSI effects and should be represented adequately in 
the analysis. 

2-9.  Analytical Modeling Procedure 

Modeling procedures for time-history analysis of hydraulic structures including the effects of fluid-structure 
interaction and foundation-structure interaction can be classified into the standard finite element and the 
substructure methods. In the standard finite element method, the complete structure-water-foundation system 
is modeled as a single or composite unit. The substructure method consists of dividing the complete system 
into three substructures: the structure, the water, and the foundation, each of which can be partly analyzed 
independently of the others. The main difference between the two methods in terms of structural modeling is 
that the interaction effects of the water and foundation are more accurately represented by the substructure 
method. 

2-10.  Substructure Method  

 a. As stated previously, in the substructure method, the complete system is divided into three 
substructures: the structure, the water, and the foundation rock region (Figure 2-2). The structure is normally 
represented as a beam or 2-D or 3-D finite element system, which permits modeling of a general geometry 
and linear elastic material properties.  The water domain may be idealized as a continuum or as a combination 
of a finite element and continuum system. Dynamic interaction between the structure and the water is 
expressed as frequency-dependent or frequency-independent hydrodynamic forces at the structure-water 
interface. The foundation region may also be idealized as a continuum (Dasgupta and Chopra 1979) or as a 
finite element system. The continuum idealization permits accurate modeling of the structure-foundation 
interaction when similar materials extend to large depths. For sites where soft rock or soil overlies harder rock 
at shallow depths, a finite element idealization of the foundation region is more appropriate. Dynamic 
interaction between the structure and the foundation is expressed by interacting forces at the structure-
foundation interface (i.e., base nodes). These interacting forces are frequency-dependent and are related to the 
displacements through the dynamic stiffness (impedance) matrix for the foundation region.  
 
 b. The equations of motion for the structure including the effects of the structure-water interaction and 
the structure-foundation interaction most conveniently are expressed in the frequency domain, because the 
hydrodynamic forces and the impedance functions for the foundation region depend on the frequency of 
excitation. The general form of the frequency domain equations of motion for a structure-water-foundation 
system is given by 
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          Figure 2-2. Substructure representation of dam-water-foundation system 
          (from Fenves and Chopra 1984b) 
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where 
 
        ω = harmonic excitation frequency 
        m = mass submatrix corresponding to nodal points above the base 
       mb = mass submatrix corresponding to nodal points at the base 
          i = 1−  
       ηs = constant hysteretic damping factor for the structure 
         k = stiffness submatrix corresponding to nodal points above the base 
       
kbb 

= stiffness submatrix corresponding to nodal points at the base 

        kb = coupling stiffness submatrix relating nodal points above the base to nodal points at the base 
     k  T

b
= transpose of kb 

( )S f ω  = dynamic stiffness matrix of the foundation region defined with respect to nodal points at the 
   base 

( )r l ω  = frequency response functions for nodal displacements above the base (l = x, y, or z)  
   (see Figure 2-2) 

( )rb
l ω  = frequency response function for nodal displacements at the base (see Figure 2-2) 

      l1  = subvector of 1's corresponding to nodal points above the base (see Figure 2-2) 

      l
b1  = subvector of 1's corresponding to nodal points at the base 

( )ω
l
hR

 

= vector of frequency response functions for hydrodynamic forces corresponding to nodal  
   points at the structure-water interface (see Figure 2-2) 

    rqS  = coupling submatrix of dynamic stiffness of foundation region relating nodal points at the  
   foundation surface under the structure base to nodal points at the foundation surface beneath 
   the water 

    qqS  = Submatrix of dynamic stiffness of foundation region defined with respect to nodal points at  
   the foundation surface beneath the water 

( )Qh ω  = vector of frequency response functions for hydrodynamic forces corresponding to nodal points 
   at the foundation surface beneath the water (see Figure 2-2) 

  
The foundation impedance matrix relates the interacting forces and displacements relative to the free-field 
ground motion in the lth  direction as given by 
  
 ( ) ( ) ( )S r Rf f

l
f
lω ω ω=          (2-2) 

 

The hydrodynamic forces and the foundation impedance functions are obtained from the separate analysis of 
the fluid domain and the foundation rock substructures. 
 

2-11.  Standard Finite Element Method 

In the standard finite element approach, the complete system consisting of the structure, the water, and the 
foundation region is modeled and analyzed as a single composite structural system . Similar to the 
substructure approach, the structure is modeled as an assemblage of beams or finite elements. The water and 
the foundation are generally represented by simplified models that only approximately account for their 
interactions with the structure. In most cases the water is modeled by an equivalent added hydrodynamic 
mass, and the foundation rock region is represented by a finite element system accounting for the flexibility of 
the foundation only. Based on these assumptions the equations of motion for the complete system become 
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        Figure 2-3.   Finite element model of gravity dam 
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where 
 

       ms = mass matrix of the structure 
       ma = added hydrodynamic mass matrix having nonzero terms only at the structure-water  

   nodal points 
     r  r , &&& = velocity and acceleration vectors, respectively 
       c = overall damping matrix for the entire system 
       k = combined stiffness matrix for structure and foundation region 
        r = vector of nodal point displacements for the complete system relative to the rigid  

   base displacement 
      x

s1  = vector of 1's corresponding to x-DOFs 

 a  ( )tx
g

= ground acceleration input in x-direction 
 

The added hydrodynamic mass generally includes nonzero terms for x-, y- and z-DOFs, because they arise 
from the hydrodynamic pressures acting normal to the structure-water interface.  For the structure-water 
interface with simple geometry, the added hydrodynamic mass terms associated with certain DOFs may be 
zero.  For example, only the added hydrodynamic mass terms corresponding to the x-DOFs (horizontal 
direction) are nonzero for a gravity dam having vertical upstream face.   

2-12.  Concrete Gravity Dams 

Conventional concrete gravity dams are constructed as monoliths (blocks) separated by transverse contraction 
joints.  Oriented normal to the dam axis, these vertical joints extend from the foundation to the top of the dam 
and from the upstream face to the downstream face. For the amplitude of motion expected during strong 
earthquakes, the shear forces transmitted through the contraction joints are small compared with the inertia 
forces of the monoliths. For this condition, the monoliths in a long and straight gravity dam tend to vibrate 
independently, and their responses to earthquakes can be evaluated on the basis of a 2-D model. However, 
curved gravity dams and those built in narrow canyons need to be analyzed using a 3-D model. 
 
 a. 2-D gravity dam model.  A 2-D model of a gravity dam for the time-history earthquake analysis 
consists of a monolith section supported on the flexible foundation rock and impounding a reservoir of water. 
The tallest monolith or dam cross section is usually selected and modeled using plane stress finite elements. 
The 2-D model of the selected monolith and the associated foundation rock and the impounded water may be 
developed as separate systems using the substructure method (Figure 2-3a), or as a complete structural system 
employing the standard finite element procedures (Figure 2-3b). 
 
 (1) Substructure method.  In the substructure method the foundation is usually modeled as a viscoelastic 
half plane (paragraph 2-24b(1)). The interaction between the dam and foundation is represented by an 
impedance matrix (i.e., Sf(ω) in Equation 2-2), defined with respect to the nodal points at the dam-foundation 
rock interface. The impedance matrix for the viscoelastic half plane is obtained from a separate continuum 
solution of the foundation region (Dasgupta and Chopra 1979). Assuming that reservoir water can be modeled 
as a fluid domain with constant depth and infinite length in the upstream direction, the frequency-dependent 
hydrodynamic forces at the dam-water interface also are obtained from a separate continuum solution 
(paragraph 2-21). The seismic input includes the vertical and one horizontal component of the free-field 
acceleration time-histories applied at the dam-foundation and at the water-foundation interface regions. Since 
the foundation impedance matrix and hydrodynamic forces are frequency dependent, the dam response is first 
carried out in the frequency domain using a discrete Fourier transformation and then the results are presented 
in the time domain by the application of an inverse discrete Fourier transformation (Fenves and Chopra 
1984b). 
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 (2) Standard method.  The viscoelastic half plane model discussed in (1) above is applicable to a 
homogeneous foundation where identical rock properties are assumed to exist for the entire unbounded 
foundation region. In general, foundation rock properties vary with depth and along the footprint of the dam. 
The effective modulus of the jointed rock within the shallow depths may significantly differ from that at 
greater depths. In these situations the viscoelastic half plane model is not appropriate and needs to be replaced 
by a finite element foundation model that can account for the variation of rock properties. The standard 
procedure is to develop a complete finite element model, which consists of the dam and an appropriate portion 
of the foundation region, as shown in Figure 2-3b. The foundation model, however, is assumed to be massless 
in order to simplify the application of the seismic input and avoid the use of large foundation models (para-
graph 2-24a). The foundation mesh needs to be extended a distance at least equal to the dam height in the 
upstream, downstream, and downward directions. The nodal points at the base of the foundation mesh are 
fixed both in the vertical and horizontal directions. The side nodes, however, are attached to horizontal roller 
supports for the horizontal excitation and to vertical roller supports for the vertical excitation of the dam.  The 
earthquake ground motions recorded at the ground surface are directly used as the seismic input and are 
applied at the base of the foundation model. The impounded water is also assumed to be incompressible so 
that the dam-water interaction effects can be represented by the equivalent added-mass concept. The added 
mass is obtained using either the simplified procedure developed by Fenves and Chopra (1986) or the 
generalized Westergaard method described in paragraph 2-19b. 

 
 b. 3-D gravity dam model.  Sometimes monolith joints are keyed to interlock two adjacent blocks, or the 
dam is built in narrow canyons or is curved in plan to accommodate the site topography and to transfer part of 
the water load to the abutments. In these situations, the dam behaves as a 3-D structure and its response 
especially to earthquake loading should be evaluated using 3-D idealization similar to that described for arch 
dams in paragraph 2-13. 

2-13.  Concrete Arch Dams 

Because concrete arch dams are 3-D structures, their responses to earthquake loading must be evaluated using 
a 3-D model. The 3-D model for an arch dam is developed using the finite element procedures and includes 
the concrete arch, the foundation rock, and the impounded water (Ghanaat 1993a, 1993b). The arch dam-
water-foundation system may be analyzed using the substructure method or the standard finite element 
procedures. Both methods use the same mathematical model to represent the concrete arch, except that the 
substructure method permits more rigorous analysis of the dam-foundation and the dam-water interaction 
effects (Tan and Chopra 1995). The standard method employs a massless foundation rock with an 
incompressible finite element model for the impounded water (Ghanaat 1993a, 1993b). The substructure 
method considers not only the foundation flexibility but also the damping and inertial effects of the 
foundation rock, and also includes a reservoir water model that accounts for the effects of water 
compressibility and the reservoir boundary absorption. 

 
 a. Dam model.  Concrete arch dams are usually idealized as an assemblage of finite elements, as shown 
in Figures 2-4 and 2-5. The finite element model of the dam should closely match the dam geometry and be 
suitable for application of the various loads and presentation of the stress results. To the extent possible, the 
finite element model of an arch dam should be developed using a regular mesh with elements being arranged 
on a grid of vertical and horizontal lines (Figure 2-4). This way the gravity loads can easily be applied to the 
individual cantilever units, and the stresses computed with respect to local axes of the element surfaces would 
directly relate to the familiar arch and cantilever stresses. The finite elements appropriate for modeling an arch 
dam include 3-D solid and shell elements available in the computer program GDAP (Ghanaat 1993a) or a 
general 3-D solid element with 8 to 21 nodes (Bathe and Wilson 1976). A thin or medium-thick arch dam can 
be modeled adequately using a single layer of shell elements through the dam thickness. A thick arch dam 
may  
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   Figure 2-4. Finite element mesh of arch dam showing elements used in the dam 
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           Figure 2-5. Perspective view of dam-foundation finite element model  
 
require three or more layers of solid elements through the dam thickness to better represent its dynamic 
behavior.   The level of finite element mesh refinement depends on the type of elements used. In general, a 
finite element mesh using the linear 8-node solid elements needs to be finer than that employing shell 
elements whose displacements and geometry are represented by quadratic functions. 
 
 b. Foundation model   
 
 (1) The standard foundation model for analysis of arch dams is the massless foundation discussed in 
paragraph 2-24a, in which only the effects of foundation flexibility are considered. Such a foundation model 
should extend to a distance beyond which its effects on deflections, stresses, and natural frequencies of the 
dam become negligible. The size of the foundation model should be determined based on the modulus ratio of 
the foundation to the concrete Ef /Ec. For a competent foundation rock with Ef /Ec ≥1, a foundation mesh 
extending one dam height in the upstream, downstream, and downward directions is adequate. For a more 
flexible foundation rock with Ef /Ec in the range of 1/2 to 1/4, the foundation model should extend at least 
twice the dam height in all directions and include more elements. In general, the foundation model can be 
developed to match the natural topography of the foundation rock region. Such a refined model, however, is 
not usually required in practice. Instead, a prismatic model employed in the GDAP program (Ghanaat 1993a) 
and shown in Figure 2-5 may be used. The seismic input for the massless foundation model includes three-
component ground acceleration time-histories applied at the fixed boundary nodes of the foundation mesh. 
Since no wave propagation takes place in the massless foundation model, the seismic input is obtained from 
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the earthquake motions recorded on the ground surface using scaling or spectrum-matching procedures 
described in Chapter 5. 
 
 (2) In the substructure method of arch dam analysis, the impedance matrix of the foundation rock region 
is employed to represent dam-foundation interaction effects (Tan and Chopra 1995). The impedance matrix 
(or frequency-dependent stiffness matrix) includes both the inertia and damping of the foundation rock region 
as well as its flexibility. This impedance matrix for arch dams is determined using a direct boundary element 
formulation applied to a uniform cross-section canyon cut in a homogeneous viscoelastic half space (Zhang 
and Chopra 1991). The assumption of a uniform cross-section canyon is to reduce the original 3-D boundary 
value problem into an infinite series of 2-D problems. The foundation model therefore is represented by the 
dam-foundation rock interface discretized into a set of boundary elements whose nodal points match the finite 
element idealization of the dam (Tan and Chopra 1995). The properties of the foundation rock are 
characterized by its Young’s modulus, Poisson’s ratio, and unit weight, which are assumed to be constant 
over the entire unbounded foundation region. Although this foundation model overcomes the limitations of 
the massless foundation, it overestimates damping for a foundation rock having relatively low modulus. 
 
 c. Reservoir water. 
 
 (1) The standard dam-water interaction analysis for arch dams is based on the finite element added 
hydrodynamic mass model described in paragraph 2-20a (Ghanaat 1993a). Assuming the water is 
incompressible, the hydrodynamic pressures acting on the dam-water interface are first obtained from the 
finite element solution of wave equation and then converted into equivalent added-mass terms. The resulting 
added-mass terms are subsequently combined with the mass of concrete nodal points on the dam-water 
interface. In most cases a prismatic finite element fluid mesh similar to that shown in Figure 2-22 (paragraph 
2-20) is adequate for computation of the added hydrodynamic mass. However, for reservoirs with irregular 
topography and shape, a fluid mesh that matches the actual reservoir topography is recommended (Figure 2-
6).  
 

DAM-RESERVOIR
INTERFACE

RESERVOIR
UPSTREAM SECTION

 
 
          Figure 2-6. Finite element mesh for incompressible water developed to match reservoir  
          bottom topography (shaded region) 
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 (2) A rigorous analysis of the dam-water interaction may be required when the fundamental frequency of 
the reservoir water is relatively close to fundamental frequency of the dam. Such an analysis, which includes 
the effects of water compressibility and reservoir boundary absorption on the response of the dam, is 
performed as described in paragraph 2-21. 

2-14.  Intake-outlet Towers  

Intake-outlet towers are designed in various structural configurations and geometric shapes. In terms of their 
structural configurations, they may be classified into two types: free-standing and supported towers. Free-
standing towers are vertical structures typically founded on an enlarged base on the reservoir bottom or 
deeply embedded in bedrock or stiff soils. The elevation profile may be uniform or tapered, and the plan 
section may be rectangular, circular, or irregular.  Supported towers are built against an abutment to provide 
increased structural stability and improved seismic performance. They may be designed as vertical or inclined 
towers supported in the lower portion or along the entire length. Like the free-standing towers, the supported 
towers are also designed in various geometric shapes, but they are subjected to earthquake excitation at the 
base as well as along the abutment supports. The following paragraphs discuss the modeling procedures for 
both types of towers. 
 
 a. Free-standing towers.  Free-standing towers may be modeled using the substructure or standard finite 
element method of analysis. The available substructure method is restricted to a tower supported on the 
horizontal ground surface and has two axes of plan symmetry with homogeneous material properties for the 
unbounded foundation region (Goyal and Chopra 1989). The standard finite element model is not restricted to 
homogeneous material properties for the foundation but employs foundation models that account only 
approximately for the foundation-structure interaction. Each model is described in the following paragraphs. 
 
 (1) Standard finite element model. 
  
 (a) Free-standing towers with regular cross-section geometry, whose dimensions may remain constant or 
vary along the height of the tower, can be idealized adequately using beam elements as depicted in Figure 2-7. 
Slender towers exhibit primarily flexural behavior, and their responses may be approximated ignoring the 
shear deformations. The response of squat towers (i.e., towers with a height-to-width ratio less than 10), 
especially for higher modes, is affected by shear deformations and should be considered in the analysis by 
using beam elements that include shear deformation capabilities. The response of towers is also influenced by 
the water-structure interaction, foundation-structure interaction, mass of internal equipment, and possibly the 
access bridge. The water-structure interaction is approximated by the added hydrodynamic mass described in 
paragraph 2-19d. The added hydrodynamic mass and the mass of the structure are lumped at the element 
nodal points. The foundation-structure interaction effects are approximately represented by equivalent linear 
springs attached to the base or to the embedded part of the model. If permitted by the computer program 
selected for the analysis, a combination of springs and dashpots may be used to represent the unbounded 
foundation region (paragraph 2-25a). For towers accessed by a light footbridge, the effects of the bridge may 
be considered by simply lumping part or all of the mass of the bridge at the nearest nodal points. A massive 
reinforced concrete access bridge, however, may significantly influence the response of a flexible tower, and 
its effects should be accounted for by modeling the bridge as part of the tower structure, as shown in 
Figure 2-7. The effects of a flexible access bridge may be negligible on the response of a stiff tower because 
their fundamental frequencies are completely different, but the tower provides support and excitation to the 
bridge and its effects on the response of the bridge should be considered. 
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     Figure 2-7. Finite element idealization of free-standing tower and access bridge 
  
 (b) The earthquake input for the tower beam model described in (a) above is defined by two horizontal 
components of the free-field ground acceleration time-histories. The effect of the vertical component of 
ground motion is expected to be negligible and is therefore not considered in the analysis. The ground motion 
is assumed to be identical at all support points.  
 
 (c) An irregular free-standing tower may require finite element discretization using solid elements as 
discussed in b below. In that case a finite element foundation model should also be developed. The earthquake 
excitation for such a model is defined by the vertical and two horizontal components of the free-field ground 
acceleration histories. 
 
 (2) Substructuring model.  
 
 (a) Free-standing towers supported on the horizontal surface of flexible rock or soil may be idealized as 
four separate substructures: the tower, the surrounding water domain, the inside water domain, and the 
foundation rock or soil system (Figure 2-8).  The available substructuring procedure for intake-outlet towers 
assumes the tower to have arbitrary geometry, but it must have two axes of plan symmetry (Goyal and Chopra 
1989). The tower is modeled as an assemblage of one-dimensional beam elements, including bending and 
shear deformations as well as rotatory interia (Figure 2-9). Each beam element node has two degrees of 
freedom, translational and rotational displacements. The part of foundation block above the ground surface 
may be assumed rigid or represented by beam elements as part of the tower; the remaining part below the 
ground surface is treated as a rigid footing of negligible thickness supported by a homogeneous viscoelastic 
half space.  The impedance functions (frequency-dependent stiffness) of the homogeneous viscoelastic 
halfspace are obtained from the analytical solution available for a circular foundation. For noncircular 
foundations, the impedance functions are determined approximately by using an equivalent circular 
foundation that has the same area and moment of inertia as the actual foundation.  
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 Figure 2-8.   Substructure representation of tower-water-foundation soil system (from Goyal and  
       Chopra 1989) 
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 Figure 2-9.  Finite element idealization of Briones Dam intake tower (from Goyal and Chopra 1989) 
 
 (b) The lateral hydrodynamic forces and external hydrodynamic moments due to pressures on the outside 
and inside surfaces of the tower are determined by the finite element coupled with the boundary integral 
procedure described in paragraph 2-20b. The fluid domain between the outside surface of the tower and a 
hypothetical cylindrical surface is discretized by finite elements, and the effects of the fluid domain beyond 
the hypothetical surface are treated by boundary integral procedures (Figure 2-9).  The analysis of inside 
water for determining the lateral hydrodynamic forces and external moments acting on the inside face of the 
tower is carried out by the finite element discretization, as shown in Figure 2-9. The solution neglects the 
effects of surface wave and water compressibility, but has been shown to be valid for towers with a wide 
range of slenderness ratios and excitation frequencies (Liaw and Chopra 1973, 1974). 
 
 (c) The earthquake excitation for the tower-water-foundation system is defined by two horizontal 
components of the free-field ground acceleration. The vertical component of ground motion is expected to 
have little influence on the response of towers and is therefore not considered in the analysis. The ground 
motion is assumed to be identical at all points on the horizontal base of the tower. The dynamic response of 
the tower for each horizontal component of ground motion can be evaluated separately and the responses to 
the two components superimposed to determine the total response. 
  
 b. Supported towers 
 
 (1) For dams in regions of high seismicity where a free-standing tower may not be feasible, an intake 
structure supported against the abutment should be considered. Two examples of supported towers are the 
inclined intake structure for the Seven Oaks Dam by U.S. Army Engineer District, Los Angeles, and the 
vertical intake/outlet tower for the Eastside Reservoir Project by the Metropolitan Water District of Southern 
California. The Seven Oaks intake structure, shown in Figure 2-10, is a reinforced concrete intake tower 
inclined against the abutment and partially embedded into the rock formation. Located in southern California, 
the inclined tower was anchored to the rock slope to withstand the earthquake forces generated by OBE and 
MCE events.  
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    Figure 2-10.  Seven Oaks Dam intake structure and associated finite 
    element idealization (U.S. Army Engineer District, Los Angeles, 1992) 
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 (2) The 3-D geometry of supported towers combined with severe seismic demand and substantial 
hydrodynamic forces influenced by the complicated site topography requires a 3-D finite element treatment of 
the structure. In addition, the nonuniform distribution of mass and stiffness and the irregular geometry of the 
tower cross section usually produce complicated bending and torsional behavior that can be captured only by 
a 3-D idealization of the structure. Generally, supported towers should be discretized using a combination of 
3-D solid and shell elements or simply by 3-D solid elements. However, some components of the tower such 
as the trashrack may be modeled more appropriately using beam elements. The tower-foundation interaction 
may be considered by including an appropriate volume of the surrounding abutment-foundation rock region 
as part of the finite element model of the tower. The foundation model should be developed to have 
dimensions approximately equal to the height of the tower in all three directions. In practice, the massless 
foundation rock model discussed in paragraph 2-24a is usually adequate, while foundation soil models may 
be represented by equivalent springs or by a combination of springs and dashpots described in paragraph 2-
25a. Figure 2-10b shows a finite element model of Seven Oaks intake structure constructed exclusively of 8-
node solid elements, except that a combination of 3-D solid and beam elements was used in idealization of the 
trash rack. The seismic input for analysis of the supported towers includes three components of ground 
acceleration time-histories applied at the fixed exterior nodes of the foundation model. 
 
 (3) The effect of hydrodynamic pressures on supported towers is represented by the equivalent added-
mass concept (paragraph 2-19). The added hydrodynamic mass for these towers, however, depends not only 
on the geometry of the tower but also on topography of the surrounding abutment-foundation region and 
should be computed using the finite element or boundary element procedures described in paragraph 2-20c. 
Figure 2-24 (paragraph 2-20c) is an example of the boundary element added-mass model applied to the 
analysis of Seven Oaks intake tower. 

2-15.  U-frame and W-frame Navigation Locks 

The interactions with the soil-pile foundation, backfill soil, and the contained water can significantly affect 
dynamic response of lock structures. These effects should therefore be modeled with reasonable accuracy in 
the time-history analysis. In most cases water-structure interaction is adequately represented by the added 
hydrodynamic mass described in paragraph 2-15a(3). The SPSI effects can be incorporated in the analysis by 
two different approaches: direct method and substructure method. In the direct method, a complete model of 
the soil-pile-structure system is developed and subjected to a prescribed input motion. For lock structures 
whose monoliths are supported by several hundred piles, the 3-D direct method of SPSI analysis may not be 
feasible. In these situations, a series of 2-D approximations of the complete soil-pile-structure system is 
required in order to capture the 3-D effects. The 2-D approximation should be attempted for both the 
upstream-downstream and the cross-stream directions.  In the substructure method, the lock structure and the 
foundation soil including the piles are treated separately. The structure is modeled using the standard finite 
element method. The soil-pile foundation is represented by impedance functions in the form of springs and 
dashpots attached to the base of the structure. The earthquake response of the structure is then computed by 
subjecting the soil-pile-structure system to a foundation-input motion. 
  
 a. Direct method. The 2-D direct method of SPSI analysis can be carried out using the computer 
program FLUSH (Lysmer et al. 1975). In this program, the response computation is carried out in the 
frequency domain and then the results are converted into time domain by the inverse Fourier transformation. 
The method of response computation in the frequency domain is described in Chapter 3.  
  
 (1) Lock model. A cross section of the lock monolith is idealized using primarily 2-D solid concrete 
elements. Rigid links and beam elements may be required for modeling the rigid connections and the beam-
like components. Minor voids and stiffness irregularities present in the lock monolith may be represented by a 
smeared 2-D model in which the mass and stiffness of corresponding elements are adjusted (reduced) to 
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account for such effects. Major voids may still be smeared in 2-D elements, but upper and lower bound 
models consisting of solid and partially hollow sections may also be required. The model of a bridge 
monolith, which supports an access bridge, should include the bridge piers as part of the finite element model 
of the lock, as shown in Figure 2-11. The mass of the bridge deck, if significant, may simply be lumped at the 
top of the piers.  
 

 
 

 Figure 2-11. Finite element idealization of bridge pier monolith and associated H-piles for Olmsted 
 Locks (U.S. Army Engineer District, Louisville, 1994a) 
 
 (2) Soil-pile foundation model 
 
 (a) For the SPSI analysis, each individual pile is modeled by a series of beam elements and the 
supporting soil is represented by plane-strain 2-D solid elements (Figure 2-12).  To simulate the rigidity of the 
connection between the pile head and the basemat of the lock structure, the pile elements should be extended 
a minimum of 0.9 m (3 ft) into the basemat or special provisions adapted to ensure the moment transfer 
between the concrete solid elements and the pile beam elements. The vertical dimension of the soil elements 
should be selected carefully, because it controls the maximum frequency of the motion that can be retained in 
the analysis. As suggested by Lysmer et el. (1975) the vertical dimension of the soil elements should not be 
greater than 1/5 of the shortest wavelength of interest. The shortest wavelength of interest is defined as the 
ratio of the lowest shear wave velocity to the maximum frequency to be retained in the analysis.  The 
horizontal dimension of soil elements can be selected several times the vertical dimension and may be 
governed by the pile spacing and other conditions.  
 
 (b) The soil model should also include a thin soft layer of about 76 mm (3 in.) beneath the lock structure 
in order to simulate the seismic loads being carried primarily by piles, as required by EM 1110-2-2906. 
Another reason for including a thin soft layer or gap beneath the lock is because complete fixity between the 
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 Figure 2-12. Finite element representation of bridge pier monolith, soil-pile foundation, and backfill  
 soils for Olmsted Locks (U.S. Army Engineer District, Louisville, 1994) 
 
lock and underlying soil either does not exist or is diminished during the ground shaking. It is therefore 
necessary to consider such a possibility to ensure a conservative design with sufficient numbers of piles.  
 
 (c) Another important aspect of the soil-pile foundation analysis is the appropriate characterization of the 
dynamic soil properties. Both the shear modulus and soil damping affect the foundation response and the soil-
structure interaction. These parameters need to be defined in terms of both the low-strain shear modulus and 
damping and their variation with shearing strain. The large shear deformations that occur in soils during 
strong earthquakes introduce significant nonlinear behavior in the foundation soil region that must be 
accounted for in the analysis. In the frequency domain SPSI analysis, which is limited to the linear 
viscoelastic system, the nonlinear soil response is approximated by the equivalent linear method (Seed and 
Idriss 1969). According to this method a linear analysis can provide an approximate nonlinear solution if the 
stiffness and damping used in the analysis are compatible with the level of shear strains developed in the soil. 
 Seed and Idriss (1970) provide data on variation of shear modulus and damping with shear strain for typical 
clays and sands. 
 
 (3) Water-structure interaction model. 
 
 (a) Earthquake ground motions generate two types of hydrodynamic pressures in a lock structure 
impulsive and convective. The impulsive pressure represents the effects of that portion of the water that 
moves in unison with the lock; the convective pressure represents the effects of the sloshing action of the 
water. The impulsive pressures exerted on the lock walls during earthquake ground shaking are computed 
using the velocity potential method described in paragraph 2-19c. For the purpose of computing 
hydrodynamic pressures, and only for this purpose, the lock walls are assumed to be rigid. The pressure 
distribution obtained in this manner is converted into nodal lumped masses according to the tributary area 
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associated with each node. These hydrodynamic masses are then considered as additional nodal masses in the 
earthquake analysis of the lock. The added hydrodynamic mass should be computed for all lock walls 
subjected to the hydrodynamic pressures during earthquake excitation. For example, the added hydrodynamic 
mass for a w-frame lock (Fig-ure 2-11) may be required for the inside surface of the land wall, both sides of 
the center wall, and the inside and outside surfaces of the river wall. Impulsive pressures are also exerted on 
the lock floor, but the added hydrodynamic masses associated with the floor pressures must be considered 
only in the vertical direction.  
 
 (b) Convective pressures associated with the water sloshing are evaluated as described in 
paragraph 2-19c(2). The fundamental period of water sloshing for a typical navigation lock is usually several 
seconds long. At such long periods the generated hydrodynamic pressures are probably as much as two orders 
of magnitude smaller than the impulsive hydrodynamic pressures. The effect of water sloshing on the 
response of navigation locks is therefore negligible and may be ignored. 
 
 b. Substructure method. In the substructure method of analysis the lock structure and the foundation soil 
including piles are treated separately. Similar to the direct method, the lock structure is idealized by the 
standard finite element method as described in a(1) above. The soil-pile foundation is represented either by 
impedance functions in the form of frequency-dependent springs and dashpots or by simple frequency-
independent springs attached to the base of the structure as described in the following paragraphs. 
  
 (1) Impedance function (dynamic stiffness). The impedance functions are complex frequency-dependent 
coefficients whose real part can be visualized as a frequency-dependent spring coefficient and the imaginary 
part as a frequency-dependent damping coefficient.  Also known as the dynamic stiffness, the impedance 
functions are computed by analytical or numerical solutions. The numerical solution of the dynamic stiffness 
of the soil-pile foundation may involve development of a model similar to that described in a(2) above. 
Usually the foundation mat is assumed to be rigid and the piles embedded in a layered soil medium. The 
properties of each soil layer and each pile are characterized by their corresponding modulus of elasticity, mass 
density, Poisson’s ratio, and material damping.  The solution is carried out in the frequency domain by 
applying unit harmonic loads at the structure-foundation interface nodes and obtaining the displacements or 
flexibility coefficients at the corresponding degrees of freedom. The dynamic stiffness is then computed by 
inverting the dynamic flexibility. Note that all the operations must be repeated for each frequency. 
Incorporation of the dynamic stiffness in the subsequent structural analysis depends on the capabilities of the 
computer program selected for the analysis. If the computer program selected for the subsequent structural 
analysis can perform response analysis in the frequency domain, the dynamic stiffness can be used directly as 
the input. Otherwise the impedance function needs to be approximated at or near the fundamental frequency 
of the system by frequency-independent stiffness, mass, and damping coefficients. 
 
 (2) Frequency-independent spring, mass, and damping. The impedance function may be approximated by 
frequency-independent stiffness, mass, and damping at or near the fundamental frequency of the system using 
regression or curve-fitting procedures. The real part of the impedance function represents mainly the stiffness 
and inertia of the foundation, and the imaginary component reflects the radiation and material damping. The 
real part Re may be approximated by: 
 
               (2-4) ( )[ ] MKIRe 2ω−=ω
 

where  
 
 I(ω) = impedance function at frequency ω  
 
     K = stiffness coefficient 
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    M = mass coefficient 
The imaginary part of the impedance function Im is approximated by: 
 

( )[ ] CiIIm ωω =                (2-5)  
 
where C is the damping coefficient. Using these approximate relationships the spring, mass, and damping 
coefficients corresponding to each structure-foundation interface DOFs are selected such that they would 
reproduce as closely as possible the actual impedance function. The procedure usually provides a good fit in 
the low and medium frequency ranges, but the inertia term leads to a significant error in the higher 
frequencies. Although this approximation provides frequency-independent lumped parameters, the structural 
analysis program should have capabilities for including dashpots at selected DOFs.  

2-16.  Massive Concrete Lock Walls  

 a. Massive walls with no backfill. The time-history dynamic response of a massive lock wall with no 
backfill soil can be evaluated using the standard finite element procedures described in paragraph 2-12a(2) for 
concrete gravity dams. A 2-D model of the wall section and the associated foundation rock is developed as 
described for gravity dams and illustrated in Figure 2-3b. The hydrodynamic pressures exerted on the lock 
wall are computed using the velocity potential method discussed in paragraph 2-19c. The resulting pressure 
distribution is then converted into equivalent nodal masses according to the tributary area associated with 
each node. Details of the finite element modeling of the wall section and the foundation rock and the 
application of seismic input should closely follow those of the gravity dams. 
  
 b. Massive walls with backfill. The time-history response evaluation of lock walls with backfill soil is 
more complicated because in addition to the interaction with the foundation rock and water, the wall is also 
subjected to the dynamic soil pressures induced by ground shaking. In this situation an accurate evaluation of 
the dynamic soil pressures is essential to the seismic analysis and design of the lock wall. The available 
methods of analysis of the backfill soil pressures fall into three categories according to the expected 
movement of the backfill and wall during seismic events.   
 
 (1) Yielding backfill. The relative motions of the wall and backfill material are sufficiently large to 
induce a limit or failure state in the soil. Representative of this approach is the well-known Mononobe-Okabe 
method (Mononobe and Matuo 1929; Okabe 1924) and its several variations, in which a wedge of soil 
bounded by the wall and an assumed failure plane are considered to move as a rigid body subjected to the 
same ground acceleration. The dynamic soil pressures using this approach are obtained as described in 
Ebeling and Morrison (1992).  The resulting dynamic pressures expressed in terms of an equivalent force are 
then considered as an external load in the time-history analysis of the wall-foundation system as described in 
a above. 
 
 (2) Nonyielding backfill. For sufficiently low intensity ground motions the backfill material may be 
considered to respond within the linear elastic range of deformations. Under this condition the shear strength 
of the soil is not fully mobilized and the backfill is said to be nonyielding. The dynamic soil pressures and 
associated forces for a nonyielding backfill are computed on the basis of elastic response. The dynamic 
pressures of a backfill idealized as a semi-infinite uniform soil layer can be computed using a constant-
parameter SDOF model (Veletsos and Younan 1994) or a more elaborate frequency-independent, lumped-
parameter, MDOF system (Wolf 1995). The dynamic pressures for a more general backfill soil condition can 
be determined by the finite element method discussed in (3) below. 
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 (3) Intermediate case. The intermediate case in which the backfill soil undergoes nonlinear deformations 
can be represented by the finite element procedures using a soil-structure-interaction computer program such 
as FLUSH (Lysmer et al. 1975). As illustrated in Figure 2-13, a SPSI model of the wall section should include 
interaction with the foundation rock, backfill soil, and the water. The wall section is idealized primarily using 
2-D solid concrete elements. The foundation rock is represented by plane-strain 2-D solid elements with 
modulus, Poisson’s ratio, and unit weight appropriate for the rock.  Transmitting boundaries in the form of 
dashpots are introduced at the sides of the foundation rock to account for the radiation damping. The backfill 
soil is modeled using plane-strain 2-D soil elements. The model should account for the variation of soil 
properties with depth and the material nonlinear behavior of soil. The shear modulus and soil damping vary 
with level of shearing strain. The nonlinear behavior is usually approximated by the equivalent linear method. 
The unbounded boundary condition of the backfill soil may be represented by dashpots. The hydrodynamic 
pressures exerted on the lock wall are computed using the velocity potential method discussed in 
paragraph 2-19c.  
 

 
 
 Figure 2-13.  Finite element discretization of concrete lock wall, foundation rock, and backfill soil with  
 transmitting boundaries 

2-17.  Massive Concrete Guide Walls 

The time-history analysis of a fixed guide wall supported on cells or drilled shafts is best represented by a 3-D 
soil-structure-interaction (SSI) analysis.  Such analysis can be performed using the computer program SASSI 
(Lysmer et al. 1981) or other programs and methods with similar capabilities. Since the precast concrete 
beams placed on the wall are not structurally connected to the wall, the 3-D model may include only one 
cellular pile or drilled shaft as shown in Figure 2-14. The model may be developed for analysis in the critical 
transverse direction (i.e., perpendicular to long axis). Whenever possible the model should take advantage of 
the structural symmetry to reduce the size of the problem and make the numerical solution more manageable. 
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The overall  model  usually consists  of  various  components  including the cellular sheet pile, soil layers and 
soil  

 
 
  Figure 2-14.  Three-dimensional finite element idealization of a fixed guide wall supported on cellular  
  sheet pile 
 
within the sheet pile, concrete pier or block above the ground surface, precast concrete beams, and the 
hydrodynamic forces acting on the pile and the concrete block. 
 
 a. Sheet piles. The cellular sheet piles are modeled using plate or shell elements. Each sheet pile is 
represented by a series of plate/shell elements connected horizontally and vertically to each other and at top to 
the concrete block. The elastic modulus of the plate/shell elements can be obtained from the work of Mosher 
(1992). Mosher has concluded that the field experimental data indicate that due to imperfect contact along the 
interlock between two adjacent sheet piles, the interlock initially undergoes significant movement but 
gradually stiffens after some movements, thus resulting in reduced subsequent lateral movements. The 
correlation studies by Mosher have also shown that the sheet piles modeled by plate/shell elements having a 
horizontal-to-vertical modulus ratio of 0.03 result in a good agreement between the computed and measured 
interlock forces. This research shows that orthotropic material properties are required for the plate/shell 
elements. Since SASSI and probably other SSI programs do not have orthotropic plate element capabilities, 
vertical beam elements can be used to compensate and represent the vertical stiffness of the sheet piles. That 
is, the low stiffness based on the modulus ratio of 0.03 is used for the plate/shell elements to simulate the 
interlock action along the horizontal planes, and vertical beam elements are employed to represent the vertical 
stiffness of the sheet piles. The mass and bending stiffness of the beam elements are set to zero, because only 
the axial stiffness of beam elements is needed. 
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 b. Soil model. Both the soil surrounding the structural model shown in Figure 2-14 and that confined 
within the cellular sheet piles should be incorporated in the computer model. As shown in this figure, the 
structural model is embedded in the foundation soil. The free-field soil at the site may consist of several soil 
layers having different dynamic properties including the unit weight, shear modulus/shear wave velocity, 
Poisson’s ratio/compression wave velocity, and the damping. The dynamic properties of the soil confined 
within the cell should be selected by giving due consideration to the effects of shaking on the strain-
dependent nature of soil properties and the mechanism of load transfer from the sheet piles to the confined 
soil, whose properties depend on the confining pressure. For the soil confined inside the cell, it is reasonable 
to assume that the earthquake shaking will induce insignificant shear straining of the soil. Thus, the low-strain 
dynamic soil properties may be more representative for the inside soil. With regard to the effect of transfer of 
the sheet-pile load to the underlying soil, two cases may be analyzed. In one case the weight of sheet-pile cells 
is assumed to be carried directly by the soil within the cell, resulting in higher confining pressures than that 
due to the weight of overlying soils alone. In the second case the weight of sheet-pile cells is assumed to be 
carried by the sheet piles-soil interface, resulting in negligible increase in confining pressures of the inside 
soil. These two cases produce two different sets of dynamic soil properties that can be used in a parameter 
study to examine the effects of soil properties on the dynamic response of the guide wall. 
 
 c. Concrete block or pier. The structural concrete block or pier at the top of the sheet piles can be 
modeled using 8-node solid concrete elements. Since the precast beams are not structurally connected to the 
wall, only their masses may be considered and added to the mass of the concrete block or pier. 
  
 d. Hydrodynamic effects. The effects of hydrodynamic forces acting on both the cell and the precast 
concrete blocks are approximated by the added hydrodynamic mass concept. The hydrodynamic pressures on 
the circular cell can be computed based on the procedure described in paragraph 2-19d. The hydrodynamic 
pressures on the precast concrete blocks and beams are calculated by the generalized Westergaard method 
discussed in paragraph 2-19b.  
 
Section III 
Fluid-Structure Interaction  

2-18. General 

A hydraulic structure and water interact through hydrodynamic pressures at the structure-water interface. In 
the case of concrete dams, the hydrodynamic pressures are affected by the energy loss at the reservoir 
boundary. Generated by the motions of the structure and the ground, hydrodynamic pressures affect 
deformations of the structure, which in turn influence the pressures. The complete formulation of the fluid-
structure interaction produces frequency-dependent hydrodynamic pressures that can be interpreted as an 
added force, an added mass, and an added damping (Chopra 1987). The added hydrodynamic mass influences 
the structure response by lengthening the period of vibration, which in turn changes the response spectrum 
ordinate and thus the earthquake forces. The added hydrodynamic damping arises from the radiation of 
pressure waves and, for dams, also from the refraction or absorption of pressure waves at the reservoir 
bottom. The added damping reduces the amplitude of the structure response especially at the higher modes.  

2-19. Simplified Added Hydrodynamic Mass Model 

If the water is assumed to be incompressible, the fluid-structure interaction for a hydraulic structure can be 
represented by an equivalent added mass of water. This assumption is generally valid in cases where the fluid 
responses are at frequencies much greater than the fundamental frequency of the structure. Following sections 
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describe the simplified added-mass procedures including original and generalized Westergaard methods, 
velocity potential method for Housner's water sloshing model, and Chopra’s procedure for intake-outlet 
towers and submerged piers and shafts.  
 
 a. Westergaard added mass. According to Westergaard (1933) the hydrodynamic forces exerted on a 
gravity dam due to earthquake ground motion are equivalent to inertia forces of a volume of water attached to 
the dam and moving back and forth with the dam while the rest of the reservoir water remains inactive. For 
analysis of gravity dams idealized as a 2-D rigid monolith with vertical upstream face, Westergaard proposed 
a parabolic shape for this body of water as shown in Figure 2-15. The added mass of water at location mai is 
therefore obtained by multiplying the mass density of water ρw by the volume of water tributary to point i: 
 

 iiwai AzHHm )(
8
7

−ρ=                (2-6) 

where  
 
    H = depth of water 
 
   zi  = height above the base of the dam 
 
   Ai  = tributary surface area at point i 
 

 
 
             Figure 2-15.   Westergaard added-mass representation 
 
 b. Generalized Westergaard added mass. Westergaard’s original added-mass concept described in a 
above is directly applicable to the earthquake analysis of gravity dams and other hydraulic structures having a 
planar vertical contact surface with the water.  For structures having sloped or curved contact surfaces, a 
generalized formulation of the added mass should be employed. The generalized formulation assumes that the 
pressure is still expressed by Westergaard’s original parabolic shape, but the fact that the orientation of the 
pressure is normal to the face of the structure and its magnitude is proportional to the total normal acceleration 
at that point is recognized. In general, the orientation of pressures on a 3-D surface varies from point to point; 
and if expressed in Cartesian coordinate components, it would produce added-mass terms associated with all 
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three orthogonal axes. Following this description the generalized Westergaard added mass at any point i on 
the face of a 3-D structure is expressed (Kuo 1982) by 
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where   
 
 Ai = tributary area associated with node i 
 
 λi = izyx ,, λλλ is the normal direction cosines (Figure 2-16) 

 
 αi = Westergaard pressure coefficient given by 
 

 ( )iiiwi zHH −= ρα
8
7                (2-8) 

 
For a 3-D surface such as an arch dam curved both in plan and elevation, the added-mass terms associated 
with a particular node form a 3×3 full matrix. However, matrices for various nodes are not coupled.  
 

 
 
             Figure 2-16.  Normal and Cartesian directions of curvilinear surface 
 
 c. Velocity potential solution of added-mass navigation locks. The hydrodynamic pressures of contained 
water exerted on navigation lock walls due to earthquake excitation can be divided into impulsive and 
convective components (Housner 1957). The impulsive pressure represents the effects of the portion of the 
fluid that moves in unison with the lock (added mass); and the convective pressure represents the effects of 
the sloshing action of the fluid. 
 
 (1) The impulsive pressures due to a horizontal component of ground motion u can be obtained from a 
velocity potential function that satisfies the Laplace equation with appropriate boundary conditions (Haroun 

&&x
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1984). The hydrodynamic pressure solution for a navigation lock chamber with a cross-section width of 2L 
filled with water to a depth of H (Figure 2-17) is given by  
 

 
 
            Figure 2-17.   Lock chamber dimensions and coordinate system 
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where ( ) L/ii 212 πλ −= and ρ w is the mass density of water. It should be noted that the series in Equation 2-
9 converges rapidly, and only one to three terms may be needed in practical applications.  Figure 2-18 
compares the pressure distributions given by this equation and the pressure distribution obtained from the 
Westergaard method. This comparison shows that the pressure distributions given by Westergaard and the 
velocity potential solution are quite different, and that the difference between the two distributions increases 
with the H/2L ratio. Therefore, for analysis of lock structures the impulsive pressure distribution given by 
Equation 2-9 should be used for determination of the added hydrodynamic mass.  
 
 (2) Water sloshing in navigation locks. The liquid sloshing force exerted on navigation lock walls during 
the earthquake shaking can be obtained from Housner’s mathematical model for water tanks (Housner 1957). 
According to Housner the sloshing force exerted on a tank wall would be the same as that exerted by a mass 
M1 attached to the tank by a restraining spring K, as shown in Figure 2-19. The mass M1 and spring constant K 
correspond to the fundamental mode of the oscillating fluid and are mounted at a height of h1 to give the same 
moment as the fluid. The mass M0 attached rigidly to the tank at height h0 gives the force resultant associated 
with the impulsive pressure discussed previously. Formulas for these parameters initially derived by Housner 
(1957) and later presented by Epstein (1976) are as follows.  
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                 Figure 2-18.  Comparison of hydrodynamic pressures  
       for various section dimensions 

where α = H/L and M is the total mass of water for a unit width section of the tank or lock. The period of 
fundamental mode of sloshing T is given by 
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where g is the acceleration of gravity. Knowing the mass M1 and period T, the sloshing force P1 as a function 
of time t is obtained from  
 

 t
T
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where M1Sa represents the maximum sloshing force and Sa is the spectral acceleration at period T obtained 
from the response spectra of earthquake ground motion. These equations are applicable for shallow tanks, i.e., 
α = H/L # 1.5, which should be valid for most navigation locks. For the cases α >1.5, refer to Epstein (1976). 
 

 
 
         Figure 2-19.   Housner’s mathematical model for impulsive and 
          convective (sloshing) hydrodynamic forces 
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 d. Added mass for towers and supporting shafts. 
 
 (1) The hydrodynamic interaction effects of the surrounding water in the analysis of intake/outlet towers 
and submerged shafts and piers are approximated by an equivalent added mass of water. The procedure is 
based on the assumption of a rigid structure surrounded by incompressible water. The inertial effects of water, 
therefore, are represented by added-mass functions computed for unit horizontal ground acceleration. These 
added-mass functions are available only for circular cylindrical towers (Jacobson 1949; Liaw and Chopra 
1973; and Rashed 1982) and for uniform elliptical towers (Kotsubo 1965). For towers and piers of arbitrary 
cross section having two axes of symmetry, the added mass is obtained from analysis of an “equivalent” 
circular tower in accordance with a simplified procedure developed by Goyal and Chopra (1989).  
 
 (2) The added mass for circular cylindrical towers or piers surrounded by water is obtained from an 
analytical solution of the Laplace equation, as presented in Figure 2-20 and various charts and tables by Goyal 
and Chopra (1989). The normalized added mass for a uniform tower of arbitrary cross section is obtained by 
converting the arbitrary section first into an equivalent elliptical and then into an equivalent circular section 
for which Goyal and Chopra’s chart and tables can be used (Goyal and Chopra 1989). The procedure is also 
extended to the added mass analysis of nonuniform towers, simply by applying these steps to various portions 
of the tower or pier that actually are, or assumed to be, uniform. 
 
 (3) The added hydrodynamic mass associated with the water inside a tower is also computed from the 
solution for an equivalent circular section in a manner similar to that described for the surrounding water. For 
the equivalent circular cylindrical towers the added mass of contained water is also obtained from an 
analytical solution of the Laplace equation, as presented in Figure 2-21 and various charts and tables by Goyal 
and Chopra (1989).  

2-20. Finite Element Added Hydrodynamic Mass Model 

The simplified added hydrodynamic mass concept described in paragraph 2-19 is generally not appropriate 
for refined analysis of hydraulic structures having complex geometry such as arch dams and irregular 
intake/outlet towers. For such structures a finite element idealization of the fluid domain permits a more 
realistic treatment of the complicated geometry of the structure-water interface as well as the reservoir 
bottom. Assuming water is incompressible, inviscid, and irrotational, the small-amplitude motion of water is 
governed by the wave equation 
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where p(x,y,z) is hydrodynamic pressure in excess of the static pressure generated by acceleration of the 
structure-water contact surface and acceleration of the reservoir bottom. The hydrodynamic pressures acting 
on the structure-water interface are obtained by solving Equation 2-16 using appropriate boundary conditions. 
Neglecting the effects of surface waves, which are known to be small, the boundary condition at the free 
surface is: 
 
             (2-17) ( ) 0=z,y,xp
 
On the structure-water contact surface, where the normal acceleration u (Figure 2-22) is prescribed, the 
boundary condition becomes:  
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        Figure 2-20.   Normalized added hydrodynamic mass for circular cylindrical  
        towers associated with surrounding water where z = distance above the base 
        of the tower or pier, H0 = depth of the surrounding water, r0  = radius of the  
        outside surface of the tower, = the added mass per unit height  2

ow
o rm πρ=∞

        of an infinitely long uniform tower of the same radius, and ( )zma
0  = the added  

        mass for circular tower or pier surrounded by water (from Goyal and Chopra 1989) 
 

 ndwu
n
p

&&ρ
∂
∂

−=               (2-18) 

 
where  n represents the direction normal to the surface. A similar boundary condition may also be applied at 
the reservoir boundary 
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where u is the normal component of ground acceleration at the reservoir boundary (Figure 2-22). In addition 
to these boundary conditions, p(x,y,z) should remain bounded in the far field of the unbounded fluid domain. 
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              Figure 2-21.  Normalized added hydrodynamic mass for circular cylindrical 
    towers associated with inside water where z = distance above the base of the  
    tower or pier, Hi  = depth of the inside water, ri  = radius of the inside surface  
    of the hollow tower, m = the mass of water contained within an  2

iwiw
i rA πρρ ==∞

    infinitely long uniform tower with the radius of r0 , and ( )zmi
a  = the added  

    mass of water contained within the circular tower (from Goyal and Chopra 1989) 
 
 
 a. Arch dams. For arch dams the solution of Equation 2-16 for hydrodynamic pressures is obtained 
numerically using the finite element method (Kuo 1982; Ghanaat 1993b), but the reservoir bottom and a 
truncating vertical plane at the upstream end are assumed to be rigid. This means that the ground motion u  
is not applied to the reservoir bottom (i.e., = 0 in Equation 2-19) and that the radiation damping due to 
propagation of pressure waves in the upstream direction is not considered. The analysis involves development 
of a finite element discretization of the fluid domain with the truncating upstream plane located a distance at 
least three times the water depth from the face of the dam. At such distance, parameter studies show that the 
acceleration at the truncated plane has a small effect on the hydrodynamic pressures at the face of the dam 
and, 

g&&
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            Figure 2-22.   Finite element idealization of incompressible  
            impounded water for arch dams (from Ghanaat 1993b) 
 
thus, can be assumed zero in practical applications (Clough et al. 1984a, 1984b). In most cases a prismatic 
fluid mesh generated by translating the dam-water interface nodes in the upstream direction is adequate for 
practical purposes (Figure 2-22).  However, if the actual reservoir topography is substantially different from a 
prismatic model, a fluid mesh that closely matches the reservoir topography may be required. In either case, 
the distance between the successive surfaces or planes arranged approximately parallel to the dam axis should 
be such that the fluid layers closer to the dam face contain finer elements. The finite element solution of 
Equation 2-16 results in nodal pressures on the upstream face of the dam, which after conversion into nodal 
forces gives the added hydrodynamic mass matrix for earthquake analysis of the dam. The resulting added-
mass matrix is a full square matrix with a dimension equal to the number of degrees of freedom on the dam-
water interface nodes.  
 
 b. Intake-outlet towers with two axes of symmetry. If the geometry of the tower is more complex or if the 
effects of the vertical acceleration of the reservoir bottom are to be considered, the simplified added mass 
computed on the basis of an “equivalent” circular tower may not properly represent the hydrodynamic forces 
acting on the tower. In such cases, the added mass for the surrounding water can be obtained from the finite 
element solution of Equation 2-16 together with appropriate boundary conditions at the tower-water interface, 
the reservoir bottom, and the free surface of water. For free-standing towers of arbitrary cross section but 
having two axes of symmetry, a semi-analytical procedure formulated by Goyal and Chopra (1989) may be 
employed. In this formulation, as illustrated in Figure 2-23, the surrounding water adjacent to the tower  is 
represented by the finite element approximation, and the fluid domain beyond this immediate region  is 
treated analytically using boundary integral procedures. Since the analytical solution of the boundary integral 
domain is evaluated for circular-cylindrical towers, the hypothetical surface between the finite element and 
the infinite region is restricted to a circular-cylindrical surface. Note that the vertical ground motion is not 
included in this formulation; only the vertical acceleration on the surface Γ  caused by the rotation of the 
foundation is considered.  Similar to the surrounding water, the hydrodynamic pressures associated with the 
inside water are also obtained from the solution of Equation 2-16, except that boundary conditions now 
correspond to the tower-water interface and free surface of the inside water.  This formulation has been 
implemented in the computer program TOWER3D (Goyal and Chopra 1989), but is restricted  to 3-D 
response analysis of towers having two axes of symmetry in plan. 
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              Figure 2-23. Three-dimensional finite element system for 
               surrounding water domain (from Goyal and Chopra 1989) 
 
 c. Irregular intake towers. The added hydrodynamic mass for the analysis of irregular towers with no 
axis of symmetry can be obtained by the procedure described for arch dams using either the finite element or 
boundary element formulation. Figure 2-24 shows an example of the boundary element formulation applied to 
added-mass analysis of the Seven Oaks intake tower. In this approach the water partially surrounding the 
intake tower is represented by surface areas of the intake tower and the reservoir bottom and sides. The 
added-mass solution is obtained as if the entire space represented by these surface areas were filled with 
water. The water domain beyond the generated mesh can be assumed to extend to infinity, and the earthquake 
ground motion may be applied to the tower as well as to the reservoir bottom. 
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        Figure 2-24. Boundary element added-mass model of Seven Oaks intake  tower  
 

2-21. Compressible Water with Absorptive Boundary Model 

 a. The added-mass representation of hydrodynamic pressure previously described ignores the effects of 
water compressibility and water-foundation interaction. Refined dam-water interaction analysis including 
these factors (Hall and Chopra 1980; Fenves and Chopra 1984b; Fok and Chopra 1985) indicates that water 
compressibility and the water-foundation interaction can significantly affect the hydrodynamic pressures and 
hence the response of concrete dams to earthquakes. The effects of water compressibility are generally 
significant when the fundamental frequency of the dam without the water is relatively close to the 
fundamental resonant frequency of the impounded water, )4(1 HCf r = , where C is the velocity of sound in 
water and H is the water depth. The water compressibility and the water-foundation interaction effects can be 
considered by solving the wave equation for compressible water  
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subjected to the boundary conditions given in Equations 2-17 to 2-19. The water-foundation interaction, as 
indicated by Equation 2-19, can be considered by using finite elements to represent the flexible foundation or 
modeling the foundation material as a viscoelastic half space. This effect has also been accounted for in an 
approximate manner by using a simplified boundary condition that models the energy dissipated at the water-
foundation interface, as described in paragraph 2-22. The most extensive study of concrete dams with 
compressible reservoir water has been carried out by Chopra and his co-workers (Hall and Chopra 1980; 
Fenves and Chopra 1984b; Fok and Chopra 1985) using the substructure method of analysis. Assuming the 
reservoir water can be idealized as a fluid domain with constant depth and infinite length in the upstream 
direction, the hydrodynamic pressures for 2-D analysis of gravity dams is obtained from a continuum solution 
(Fenves and Chopra 1984b). For irregular reservoir boundaries, the fluid domain is usually assumed to consist 
of an irregular portion adjacent to the dam and a uniform section of infinite length in the upstream direction 
(Figure 2-25). The irregular portion is represented by a finite element discretization  (Hall and Chopra 1980) 
or boundary element method (Humar and Jablonski 1988), whereas the uniform portion is analyzed by a 
continuum solution.  The equal pressure conditions at the interface then enforce the coupling between the two 
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          Figure 2-25. Finite element model of compressible water with absorptive 
          boundary for Dongjiang Arch Dam, China (from Ghanaat et al. 1993) 
 
regions. Such formulation of the hydrodynamic pressure results in frequency-dependent hydrodynamic terms 
that are best treated in the frequency domain. This procedure has been implemented in the computer program 
EACD-3D (Fok, Hall, and Chopra 1986) for the earthquake analysis of arch dams. 
 
 b. The hydrodynamic pressure in the reservoir, as given by Equation 2-20, is generated by the 
acceleration of the upstream face of the dam and vertical accelerations of the reservoir bottom. The solution in 
frequency domain produces the frequency response functions for the hydrodynamic pressures in the 
impounded water. The computed pressure frequency response functions at the face of the dam and at the 
reservoir bottom are then converted into statically equivalent nodal forces ( )R h

l ω  and ( )Qh ω  and are 
substituted into the system equations of motion (Equation 2-1). 

2-22. Reservoir Boundary Absorption 

 a. The energy loss capability of the reservoir bottom materials is approximately modeled by a boundary 
that partially absorbs (refracts) the incident pressure waves (Hall and Chopra 1980).  In the boundary 
condition for the reservoir bottom, this energy loss is represented by the damping coefficient q, which is 
related to the wave reflection coefficient α by 
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where ρ  and C are the density and sound velocity for water, respectively, and ρs and Cs are the density and 
sound velocity for the bottom materials, respectively. The reflection coefficient α provides a measure of the 
level of absorption of the reservoir bottom materials. It is defined as the ratio of the amplitude of the reflected 
pressure wave to the amplitude of incident pressure wave impinging on the reservoir bottom. The values of α 
vary between 1 and -1 where α = 1 represents a nonabsorptive rigid boundary with 100 percent reflection, α = 
0 corresponds to a complete absorption with no reflection, and α = -1 characterizes 100 percent reflection 
from a free surface with an attendant phase reversal (water surface).  Recent field investigations have 
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indicated that the average values of α for the reservoir bottom materials measured at several concrete damsites 
varied over a range from -0.55 to 0.66 (Ghanaat and Redpath 1995). Three of the measured values were 
negative and the largest (0.66) was much less than 1the value corresponding to a rigid boundary. The 
results also showed that some sites had thick layers of soft and muddy sediments with propagation velocities 
less than that of water, thus leading to negative values of α, a situation never before considered analytically.  
 
 b. All hydrodynamic pressure terms (i.e., added mass, added damping, and added force) are affected by 
the reservoir bottom absorption. Previous studies (Hall and Chopra 1980; Fenves and Chopra 1984b; Fok and 
Chopra 1985) indicate that the reservoir bottom absorption increases the effective damping, hence reduces the 
dam response to earthquake loading. The reduction of dam response due to reservoir bottom absorption, 
however, is much larger for the response to vertical ground motion than to horizontal. Considering that the 
dam responses due to the vertical and horizontal components of the ground motion are not usually in phase, 
the effect of reservoir bottom absorption on the total response of the dam is less than that for the vertical 
ground motion. 

2-23. Foundation-Structure Interaction 

Foundation-structure interaction introduces flexibility at the base of the structure and provides additional 
damping mechanisms through material damping and radiation. The interaction with the flexible foundation 
affects the earthquake response of the structure by lengthening the period of vibration and increasing the 
effective damping of the system. The increase in the damping arises from the energy radiation and material 
damping in the foundation region. However, interaction with the flexible foundation also tends to reduce the 
structural damping that the structure would have had in the case of a rigid foundation (Novak and El Hifnawy 
1983).  For lightly damped hydraulic structures (less than 10 percent damping) the reduction in structural 
damping is usually more than compensated for by the added damping of the flexible foundation.  Such 
interaction effects introduce frequency-dependent interacting forces at the structure-foundation interface, 
which are represented by the dynamic stiffness (or impedance) matrix for the foundation rock region, as 
described previously. 

2-24. Rock Foundations 

 a. Massless finite element foundation model. 
 
 (1) The effects of dam-foundation interaction can most simply be represented by including, in the finite 
element idealization, foundation rock or soil region above a rigid horizontal boundary. The response to the 
earthquake excitation applied at the rigid base (bedrock) is then computed by the standard procedures. Such 
an approach, however, can lead to enormous foundation models  where similar  materials extend to large 
depths and there is no obvious "rigid" boundary to select as a fixed base.  Although the size of foundation 
model can be reduced by employing viscous or transmitting boundaries to absorb the wave energy radiating 
away from the dam (Lysmer and Kuhlemeyer 1969), such viscous boundaries are not standard features of the 
general-purpose structural analysis programs. 
 
 (2) These difficulties can be overcome by employing a simplified massless foundation model, in which 
only the flexibility of the foundation rock is considered while its inertia and damping effects are neglected. 
The size of a massless foundation model need not be very large so long as it provides a reasonable estimate of 
the flexibility of the foundation rock region. A foundation model that extends one dam height in the upstream, 
downstream, and downward directions usually suffices in most cases. Unlike the homogeneous viscoelastic 
half plane model described previously, this approach permits different rock properties to be assigned to 
different elements, so that the variation of rock characteristics with depth can be considered. The massless 
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foundation model also permits the earthquake motions recorded on the ground surface to be applied directly at 
the fixed boundaries of the foundation model. This is because in the absence of wave propagation, the 
motions of the fixed boundaries are transmitted to the base of the dam without any changes.  
 
 b. Viscoelastic foundation rock model.  
 
 (1) The stiffness and damping characteristics of foundation-structure interaction in a viscoelastic half-
plane (2-D) or half space (3-D) model are described by the impedance function. Mathematically, an 
impedance function is a matrix that relates the forces (i.e., shear, thrust, and moment) at the base of the 
structure to the displacements and rotations of the foundation relative to the free field. The terms in an 
impedance function are complex and frequency dependent with the real component representing the stiffness 
and inertia of the foundation and the imaginary component characterizing the radiation and material damping. 
 
 (2) Viscoelastic half plane model. For sites where essentially similar rocks extend to large depths, the 
foundation rock for 2D analyses may be idealized as a viscoelastic half plane.  In other situations where soft 
or fractured rock overlies harder rock at shallow depth, a finite element idealization (a above) that permits for 
material nonhomogeneity and structural embedment would be more appropriate. In viscoelastic half plane 
idealization, foundation-structure interaction is represented by a complex valued impedance or dynamic 
stiffness matrix (Sf (ω) in Equation 2-2). Assuming that the structure is supported on a horizontal ground 
surface with homogeneous material properties, the dynamic stiffness matrix Sf (ω) is evaluated using the 
approach by Dasgupta and Chopra (1979) or other approaches that use boundary element and Green's 
functions to analyze the problem (Wolf and Darbre 1984; Alarcon, Dominguez, and Del Cano 1980).  
 
 (3) Viscoelastic half space model. The foundation rock for 3-D analyses of concrete hydraulic structures 
supported on essentially similar rocks with homogeneous material properties may be represented by 
viscoelastic half space. Employed in the substructure method of analysis, the half space model leads to an 
impedance matrix for the foundation rock region defined at the structure-foundation interface. A variety of 
boundary element methods using different Green's functions, finite element techniques in frequency domain 
using transmitting boundaries, finite element method in time domain, infinite elements, and hybrid methods 
are available to compute impedance matrices for surface and embedded foundations. Without certain 
simplifying assumptions, these techniques are computationally demanding and are usually unsuitable for 
practical applications. One such assumption applied to the analysis of arch dams is to assume that the dam is 
supported in an infinitely long canyon of arbitrary but uniform cross section and thus break down the problem 
into a series of two-dimensional boundary problems (Zhang and Chopra 1991).  In situations where soft or 
fractured rock overlies harder rock at shallow depth, a finite element idealization accounting for the material 
nonhomogeneity should be used. 

2-25. Soil and Pile Foundations 

 a. Discrete spring-mass-damper soil model. Time-history analysis of concrete hydraulic structures 
including soil-structure interaction effects can be performed in the time domain using a discrete model of the 
soil. Such a discrete model of the soil consists of frequency-independent springs, dampers, and masses. The 
simplest model that can be developed for each degree of freedom of a rigid basemat includes a spring and a 
damper connected to the basemat with a fictitious mass of the soil added to mass of the structure. The 
frequency-independent coefficients of this SDOF system are obtained by a curve-fitting procedure such that a 
good agreement between the dynamic stiffness of the SDOF model and that of the actual soil (computed using 
continuum solutions in b below) is achieved. However, the performance of the SDOF system in reproducing 
the actual response of the soil is limited. A better agreement can generally be achieved by introducing an 
additional mass connected to the basemat through a damper (Wolf 1988; Figure B-1 of Appendix B). 
Appendix B provides descriptions and tables of discrete model dimensionless coefficients for a disk supported 
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by a homogeneous half space, an embedded cylinder, an embedded prism, and a strip supported on the surface 
of a homogeneous half space. 
 
 b. Continuum model. In the substructure method of analysis in the frequency domain, the soil medium is 
analyzed separately to obtain the force-displacement relationship of the soil defined at the structure-soil 
interface. This frequency-dependent impedance function (dynamic stiffness) for the unbounded homogeneous 
surface foundation can be obtained using continuum solutions. The viscoelastic model described in 
paragraph 2-24b(2) is an example of such procedure, which is equally applicable to analysis of the soil 
medium.  
 
 c. Finite element model. The frequency-dependent impedance function (dynamic stiffness) for layered 
and nonhomogeneous soil medium is obtained using finite element procedures. The finite element analysis for 
development of impedance functions for 2-D and 3-D problems may be performed using FLUSH (Lysmer 
et al. 1975) and SASSI (Lysmer et al. 1981) computer programs, respectively. Using these codes, first the 
equations of motion for the foundation substructure are solved for unit harmonic loads applied at the 
boundary interface to calculate displacements at corresponding degrees of freedom (dynamic flexibility). The 
impedance functions are then obtained from the inverse of the dynamic flexibility matrix. 
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